
DFT: A Novel Algorithm for Data Cleansing

Shweta Taneja , Ishita Ashri , Shipra Gupta , Mehak Sharma

Computer Science Department

Bhagwan Parshuram Institute of Technology, New Delhi

Abstract- Data cleansing is an essential part of data mining and
has become a pre-requirement before analysing any kind of
data. The data collected by an organisation is enormous and
full of errors and inconsistencies, which degrades the quality
of data and affects the results of mining. Many algorithms
have been proposed by several authors to deal with such
inconsistencies. But, a little work has been done on the date
type field. Being an integral part of any data we need to ensure
that the date field associated with a database is consistent in
all aspects. This paper addresses the various problems related
with date type fields and different types of errors that can
occur due to different date formats. We propose an algorithm
DFT for the transformation of varying date formats into a
unique consistent format to avoid any ambiguities. The data
set for implementation of the algorithm is taken from the
causelists of Supreme Court of India. The algorithm shows
good results and transforms each date record into a unified
format to avoid noise in the database.

Keywords— Data Cleaning, Normalisation, Inconsistent Date
Formats, Disguised Date values

I. INTRODUCTION
A Data Warehouse is a subject oriented, integrated, non-
volatile and time variant collection of data in support of
management’s decisions[1]. The Data Warehouse of an
enterprise consolidates data from multiple sources in order
to support enterprise wide decision making, reporting,
analyzing and planning. The processes performed on data
warehouse for above mentioned activities are highly
sensitive to the quality of data. They depend on the
accuracy and consistency of data. Data cleansing, data
cleaning or data scrubbing is the process of detecting and
correcting (or removing) corrupt or inaccurate records from
a record set, table, or database [2]. Degraded quality of data
leads to wrong conclusions of these processes which
ultimately lead to wastage of all kinds of resources and
assets. Thus data cleansing plays an important role in data
mining. A lot of work has been done in handling various
types of inconsistencies in data like Name, Address, Phone
number, etc but very little work has been done on the date
type format till now.
Every key structure in the data warehouse contains an
element of time, explicitly or implicitly. Date field is very
crucial for the data warehouse as whenever data would be
loaded into the warehouse, the date on which data is loaded
would be saved either explicitly or implicitly.
There are different types of inconsistencies which can occur
with date type fields. They are:

• Time Zone Differences
• Inconsistent Date Formats

• System Date Errors
• Disguised Date Values
• Integration Errors
• Data Entry Errors

 Thus we need to avoid inconsistencies and ambiguities
arising with the date type. In this paper we propose an
algorithm Date Field Transformation Algorithm (DFT) in
order to remove the inconsistencies in the date type field. In
our algorithm data from multiple sources having different
date formats is integrated. Date is normalized and is
converted to a uniform format in order to maintain
consistency.
The organisation of paper is as follows. Related work is
presented in Section II which summarizes the work done
earlier by various authors related to date type field. Section
III details the various kinds of problems or errors related to
date field. Section IV explains the proposed rules for our
algorithm (DFT) which is proposed in section V along with
its proposed framework. The algorithm normalizes the date
type format after integration from multiple sources. The
date normalization framework defines a system which takes
data as input from different software and converts the data
into a normalized and consistent format. Experiments
conducted and results obtained are dealt with in section VI.
Some of the limitations in existing approaches which can be
worked on in near future are defined in section VII along
with the conclusion.

II. RELATED WORK
In order to maintain accuracy and consistent records, we
need to ensure that our database is clean. Here data
cleansing comes into play. Data cleansing is of utmost
importance as it not only removes duplicate data but also
corrects inaccurate data. Several papers have been read
dealing with the inconsistencies of data. A comprehensive
algorithm for data cleansing is proposed in [3]. The target
of the authors is to correct and detect most of the error
types and problems such as lexical errors, domain format
errors, irregularities, integrity constraint violations and
duplicates. J. J. Tamilselvi suggests two algorithms to
handle noisy data [4]. The noisy data errors include
duplicate records, data entry records & spelling errors. The
algorithms will handle this noisy data by expanding
abbreviations, removing unimportant characters &
eliminating duplicates. The two algorithms used are
Attribute selection algorithm and token based algorithm.
G.Beskales has provided a solution to deal with duplicate
words via ProbClean [5]. It generates multiple repairs by
setting different parameters and allows clustering of

Shweta Taneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2297-2301

www.ijcsit.com 2297

duplicate records. It allows user to choose the source and
the method of repair. Distance function is applied to each
unclean attribute and final U-clean relationship. Each repair
with its running time is shown. A tool Febrl is developed in
[6]. It is an open source tool with Graphical User Interface.
It can be used to compare a record linkage technique with
the existing record linkage techniques. This tool is useful in
development, implementation and testing of new record
linkage algorithms and techniques. It supports many text
based file formats including CSV. It also contains nine
encoding methods for comparison. Problems encountered
in the instance level of a database or schema is targeted in
[7]. The problems are missing values, duplicate tuples, null
values, values outside the domain, among others. This
paper delivers an archetype contribution on optimization of
algorithm for the detection of duplicate tuples in databases.
For this it uses phonetic based on multithreading without
the need for trained data and an independent environment
of language to be supported. The detection and correction
of erroneous data based on error detection rules is dealt
with in [8]. These rules have been proposed by analyzing
the detection process. The optimized detection algorithm is
implemented using SQL statements. In [9], the approach is
to holistic repair which improves the quality of the cleaned
database with respect to the same database treated with a
combination of existing techniques. This paper combines
existing formalisms and expresses rules involving
numerical values and predicates such as “greater than” and
“less than”. The holistic approach holistic approach
outperforms previous algorithms in terms of quality and
efficiency of the repair. A hybrid approach HADCLEAN
for cleaning data is put forward in [10], which is a
combination of modified PNRS and transitive closure
algorithm. The contemporary PNRS algorithm was
correcting the spelling mistakes in data by using a standard
dictionary or any other language specific dictionary.
Conditional functional dependencies are discovered from
relations and used as rules for cleaning relational data in
[11]. It has implemented three algorithms for discovering
minimal CFDs: CFDMiner (for mining minimal constant
CFDs), CTANE (for discovering general minimal CFDs
based on the level wise approach) and FastCFD (for
discovering general minimal CFDs based on a depth-first
search strategy). Z. Yuhang introduces a new method for
cleaning new and rare word which are, word frequency i.e.
number of times a word is repeated in whole text and
weightings i.e. importance of the text, in [12]. They use C-
means algorithm for text clustering. Text clustering is used
to increase flexibility, scalability and to make it easy to use.
This method is more efficient and decrease probability of
mistake in filtering rare word. It also increases accuracy of
finding these words which make result of text cluster more
accurate. A framework based on the ETL process (Extract,
Transform & Load) is proposed in [13] .Three parts which
are used in the cleaning process are: extract the invalid
value, matching attributes with valid values and data
cleaning algorithm. K-nearest neighbour algorithm is used
for data cleaning in this paper. Payal Pahwa in her paper
provides association rules for data mining and specifically
deals with the date type field by defining the type of errors

and their identification [14]. Alliance rules based on the
principle of association in mining are explained in [15].
They provide a method to handle duplicity in the name type
field. Few of them target the inconsistencies associated
with date type field. A.Marcus and J.I.Maletic have defined
the potential errors that may creep in any database such as
non-numerical values in data type field, outlier values, date
earlier than DOB , empty fields for DOB, outlier values etc
[16]. It also proposes data quality metrics to deal with such
inconsistencies.
In the above proposals, errors are defined and some rules
are proposed. Our approach differs from their proposals
.We present Date Field Transformation Algorithm (DFT) to
deal with varying formats in the date type field.

III. PROBLEMS IN DATE FIELD

There are various problems that can occur in date field
while integrating date from multiple sources. The problems
associated with date field are explained below:

a. No standard format is followed for date therefore
there is a need for a normalized representation :
While integrating data from multiple sources ,
dates might be in different formats like :

 FORMAT EXAMPLE
 MM-DD-YYYY 12-06-2012
 DD-MM-YYYY 06-12-2012
 YYYY-MM-DD 2012-12-06
 YYYY-DD-MM 2012-06-12
 MM-DD-YY 12-06-12
 DD-MM-YY 06-12-12
 DD-YY-MM 06-12-12
 DD-MON-YY 6-Dec-12
 DD-MONTH-YY 06-December-12

 These dates can be interpreted differently.
b. Disguise Date Values: Disguise data refer to fake

or incorrect data such as the attribute birth date is
often required in many customer account
registration forms. However, many customers do
not want to disclose their privacy. Popularly, one
may choose January 1 (the first value in the pop-
up lists of month and day, respectively) in order to
pass. Here, January 1 is a disguise for the missing
data.[17]

c. Time Zone Differences: Time zone may differ due
to difference in regions. Different time zones such
as BST (British Summer Time), GMT
(Greenwich Mean Time), DST (Daylight saving
time), UTC (Coordinated Universal Time), etc. are
used.

d. Difference in Abbreviations: In text or string
format user might use different abbreviations. E.g.
Jan, January, jn , june, jun, etc.

e. Different kinds of separators are used for date
values.

f. De-duplication Errors: redundant entries for same
date/time referring to same entity.[5]

g. System Date Errors: Verification of system date,
system date checks according to ISO standard.

Shweta Taneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2297-2301

www.ijcsit.com 2298

h. Integration Errors: Errors which may occur while
integrating from various sources, each using a
different format for date type.

i. Data Entry Errors: Errors which may occur as a
consequence of human carelessness and
negligence while entering data into the system.

IV. PROPOSED RULES

In our algorithm we have proposed a set of rules which are
indicated as follows:
• R1 (Rule 1): The rule 1 places a delimiter between

date, month and year fields of Integer type is a must,
be it a space. It can be avoided only in the case when
month field is of string type and its position is in
between the date and year field.

• R2 (Rule 2): The year field should be in YYYY
format. It can be used in the YY format only when it
is used at the last position. If YY format is used then
the rules applied for normalization are given below.

• R3(Rule 3): In case of ambiguity between the month

and date field when no record in the table for date
field is greater than 12 and no day field is provided
then we assume that date follows the month field.

• We have not considered data entry errors in our
algorithm.

All the rules stated above are made to avoid any kind of
ambiguity while combining data from multiple sources or
different date formats obtained from a single source.

V. PROPOSED ALGORITHM- DFT

Figure 1: Figure shows the framework of DFT

In this section, we present our proposed algorithm along
with its framework and steps.The framework for the
algorithm is shown in figure 1 given above. A user can
choose a file with the help of an interactive user interface.
Files can be taken from multiple sources and can have
various file formats. Now the three rules stated above are
applied on each table individually. After applying the rules
dates are normalised in one consistent and unique format.
Now this data will be stored in the database. Since all the
dates are in a consistent format, any operation can be
applied on it.
The algorithm for date field transformation is proposed as
follows. It transforms the date field for a table before
integrating it with the other tables.
The following is a list of variables that are used in our
algorithm:
D1, D2: Delimiters (Can be any symbol, other than letters or
digits. Even space and special characters are allowed)
A: Position after D2
B: Position between D1 and D2
C: Position before D1
VA: Array of all values of fields after A.
VB: Array of all values of fields after B:

Vc: Array of all values of fields after C.

The steps used for normalization of date field in a table are
given below:
1. Search for a 4 digit continuous number ->YYYY
 1.1. If not found, then the last two digits YY is the year.
 1.2. Rule 2 is applied on the year field YY
 1.3 If YY<29 prefix 20
 1.4 Else If YY>30 prefix 19
2. If a string of at least 3 characters is found
 2.1 Call checkValidMonth() to check if it is a valid
month.
 2.2 If step (a) returns true then go to next step.
 2.3 Else go to step 4.
3. If remaining digits <=2, then set it equal to dd.
 3.1 Call checkDate() to check if it is a valid date.
4. Check for the position of year relative to delimiter:
 4.1 If YYYY or YY after D2
 Case A ->Call f1(VC,VB)
 4.2 Else If YYYY between D1 and D2
 Case B-> Call f1 (VA, VC)
 4.3 Else If YYYY before D1
 Case C-> Call f1 (VA, VB)

The following is a list of definition of functions used in the
algorithm:
 f1 (a [], b []):
 1. If any value of a>1
 1.1 a-> dd & b->mm
 1.2 Call dateCheck() to check if it is a valid date.
 1.3 Call checkValidMonth() to check if it is a valid

month.
2. Else if any value of b>12
 2.1 a-> mm and b->dd
 2.2 Call dateCheck(false) to check if it is a valid date.
 2.3 Call checkValidMonth() to check if it is a valid

month.

 YY

 If < 29 If>=30
Pre-append 20 Pre-append 19
 i.e. 20YY i.e. 19YY

Shweta Taneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2297-2301

www.ijcsit.com 2299

3. Else
 3.1 Else a->mm & b-> dd
 3.2 Call checkDate() to check if it is a valid date.
 3.3 Call checkValidMonth() to check if it is a valid

month.
checkDate():

1. If Month=(Jan, Mar, May, Jul, Aug, Oct, Dec) || (
January, March, May, July, August, October, December)
|| (01, 03, 05, 07, 08, 10, 12)
 1.1 If 0<Date<32 return true
2. If Month= (Apr, Jun, Sep, Nov) || (April, June,
September,
November) || (04, 06, 09, 11)
 2.1 If 1<Date<31
 Return true
3. If Month= Feb || February || 02
 3.1 If (YYYY % 4==0)
 3.1.2 If 0<Date<30
 Return true
 3.2 Else
 3.2.1 If 0<Date<29
 Return true
checkValidMonth():

1. If mm= (January) || (February) || (March) || (April) ||
(May) || (June) || (July) || (August) || (September) ||
(October) || (November) || (December) || (Jan) || (Feb) ||
(Mar) || (Apr) || (May) || (Jun) || (Jul) || (Aug) || (Sep) || (Oct)
|| (Nov) || (Dec)
 1.1 Return true

2. Else return false
The algorithm successfully transforms the date field of the
records into a unique consistent format as per the rules of
the algorithm.

VI. EXPERIMENT CONDUCTED AND RESULTS

OBTAINED
The proposed algorithm is implemented using java (JDK
1.7) as frontend and MS-SQL 2005 as backend. The data
set for testing is taken from the causelists of Supreme Court
of India [18]. It is a collection of dates of hearing on court
cases. We have taken a random subset of 100 records. Here
we present a sample of 10 records in figure 2 and the results
obtained after the execution of algorithm is displayed in
figure 3.

Figure 2: Original database before execution of algorithm

Figure 3: Modified Database after execution of algorithm

Shweta Taneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2297-2301

www.ijcsit.com 2300

VII. CONCLUSION AND FUTURE WORK
 Our proposed algorithm provides a solution to deal
with the inconsistent data formats which may occur in date
type field. The algorithm identifies the different formats
and transforms them into a unique consistent format. The
unique format obtained avoids any errors and
inconsistencies and at the same time maintains readability.
The desired date format chosen is “dd month yyyy”. The
algorithm transforms each date record into this unified
format to avoid noise in the database.
 Our algorithm has various applications. It can be
applied on the manual records of various organisations to
unify the various formats used in date field. Not only on
manual records ,DFT can also be applied on digital formats
where a unique format for date becomes necessary for any
kind of further processing such as analysing and searching.
In future, the work can be extended to cover other errors
associated with the date field such as duplications, disguise
data values, etc.

REFERENCES
[1] P. Ponniah, Data Warehousing Fundamentals: A Comprehensive

Guide for IT Professionals, John Wiley and Sons, Inc., 2001, pp.19.
[2] S.Wu, “A review on coarse warranty data and analysis”, Reliability

Engineering and System, vol.114, pp.1–11, June 2013.
[3] Dr. M. M. Hamad and A. A. Jihad, “An enhanced technique to clean

data in the data warehouse” in IEEE conference on Developments, E-
systems Engineering, 2011.

[4] J. J. Tamilselvi, et-al, “Handling Noisy Data using Attribute
Selection and Smart Tokens”, in IEEE International Conference on
Computer Science and Information Technology,2008.

[5] G. Beskales, et-al, “ProbClean: A Probabilistic Duplicate Detection
System”, in IEEE ICDE Conference, 2010

[6] P. Christen, “Febrl – An Open Source Data Cleaning, Deduplication
and Record Linkage System with a Graphical User Interface”, ACM,
August 24–27, 2008.

[7] T . L. de Andrade, R. C. G. de Souza, et-al, “Optimization of algorithm
to identification of duplicate tuples through phonetic based on
multithreading”, in 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2011.

[8] Z. Zhang, et-al, “Research of Error Data Detection Algorithm Based
on Rules”, IEEE, 2011.

[9] X. Chu, et-al, “Holistic Data Cleaning: Putting Violations into
Context”, in IEEE ICDE Conference, 2013.

[10] A. Paul, et-al, “HADCLEAN: A Hybrid Approach to Data Cleaning
in Data Warehouses”, 2012.

[11] W. Fan, et-al, “Discovering Conditional Functional Dependencies”,
IEEE Transactions On Knowledge And Data Engineering, vol. 23,
no. 5, May 2011.

[12] Z. Yuhang, “ Research on Data Cleaning in Text Clustering”, in
IEEE Conference at International Forum on Information
Technologygy and Applications, 2010.

[13] H.H. Mohamed, et-al, “E-Clean: A Data Cleaning Framework for
Patient Data”, in IEEE First International Conference on Informatics
and Computational Intelligence, 2011.

[14] A.Marcus, J.I.Maletic, “Utilizing Association Rules For the
Identification of Errors in Data”, University of Memphis, TR-CS-00-
04, 2004.

[15] P. Pahwa, et-al, “Alliance Rules for Data Warehouse Cleansing” in
IEEE International Conference on Signal Processing Systems, 2009.

[16] A.Marcus, J.I.Maletic,“Automated Identification of Errors in Data
Sets”, University of Memphis, TR-CS-00-02, 2002.

[17] M. Hua and J. Pei, “DiMaC: A System for Cleaning Disguised
Missing Data”, SIGMOD, ACM, Vancouver, BC, Canada, June 9–12,
2008.

[18] Causelists of Supreme Court of India. Available at
http://causelists.nic.in/scnew/index1.html.

Shweta Taneja et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2297-2301

www.ijcsit.com 2301

